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EFFECT OF BULK VISCOSITY ON KELVIN–HELMHOLTZ INSTABILITY

UDC 532.5:532.517.4Yu. N. Grigor’ev1 and I. V. Ershov2

An energy functional leading to a resolvable variational problem for determining the critical Reynolds
number of laminar–turbulent transition Recr is constructed within the framework of the nonlinear
energy stability theory of compressible flows. Asymptotic estimates containing the characteristic
dependence Recr ∼

√
α + 4/3 (α = ηb/η) in the main order are obtained for the stability of various

modes of Couette compressible gas flow. The asymptotics considered are long-wave approximations.
This suggests that the obtained dependence describes the effect of bulk viscosity on the large-scale
vortex structures characteristic of Kelvin–Helmholtz instability.

Key words: hydrodynamic stability, energy theory, compressible gas flow, bulk viscosity, laminar–
turbulent transition, critical Reynolds number.

Introduction. The dissipation effect in molecular gases, which is manifested in anomalous absorption of
high-frequency sound, has been known since the 1930s [1]. Recently, this effect has been studied in aerodynamics
in order to use it to retard laminar–turbulent transition and suppress turbulence.

Research in this area was pioneered by Nerushev and Novopashin [2], who performed comparative experi-
ments on laminar–turbulent transition in Hagen–Poiseuille flow in a round tube for nitrogen N2 and carbon monoxide
CO. The thermodynamic and transport properties of these gases are almost identical but the bulk viscosity of CO
calculated from data on ultrasound attenuation is several times higher that the similarly calculated value for N2.
It was found in the experiments that, under the same conditions, the transition Reynolds number Ret in the more
viscous gas CO was approximately 10% higher than the corresponding value for N2.

For some reasons, the validity of the indicated results was questionable. In particular, for the bulk viscosities
of the gases used there are different data (see the references in [3]) obtained by measuring relaxation times in shock
waves. From these data, which are also given in part in [2], it follows that the difference between the bulk viscosities
N2 and CO is small so that it cannot be responsible for the observed change in Ret. The fact that in [2] there are
no comments on this inconsistency was noted in [4].

Bertolotti [4] employed linear stability theory to numerically study the effect produced by excitation of the
internal degrees of freedoms of molecules on laminar–turbulent transition (LTT) in a compressible boundary layer
on a plate. Calculations for supersonic airflow have shown that accounting for bulk viscosity lead to an insignificant
stabilizing effect, which is manifested in small deformations of the neutral curves for the first and second unstable
modes (for the definition of these modes, first introduced in [5], see in [6]). For flow over a plate at Mach numbers
ultimately admissible for the Navier–Stokes model and at ratios of bulk and dynamic viscosities realistic for diatomic
gases, estimates using linear theory [7] have also shown that bulk viscosity has a weak effect on the value of Ret.

Nevertheless the results [4, 7] obtained in a linear approximation are not in direct contradiction to experimen-
tal data [4]. As is known, linear stability theory satisfactorily describes LTT on a plate, whereas Hagen–Poiseuille
flow in a linear approximation is steady-state. At the same time, in [4], the transition to turbulence was observed
up to the final nonlinear stage.
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To estimate the effect of bulk viscosity on the nonlinear development of perturbations, Grigor’ev and Ershov
studied [8] compressible Couette flow perturbed by a Rankine vortex. Despite simplicity, this model adequately
describes the evolution of large vortex structures against the background of the carrier shear flow, which is a
characteristic element of modern scenarios of transition and generation of developed turbulence [9]. Calculations
[8] of such flow using the full Navier–Stokes equations for a viscous heat-conducting gas have shown that, in the
realistic range of bulk viscosities, the dissipation effect is rather significant. In this case, the relative change in the
rate of damping of the initial vortex perturbation reaches 10%.

Because the calculations of [8] were made on a rather coarse mesh, at least, part of the dissipation effect,
which is a few percent, may be attributed to the effect of schematic viscosity. In [10], the model flow [8] was again
calculated for a sequence of nested meshes to separate the physical and approximation effects. The calculations
using the scheme of [11] with a symmetric approximation of convective derivatives confirmed that the change in the
dissipation effect in [8] is almost entirely due to bulk viscosity.

As is known, the bulk viscosity in the Navier–Stokes equations takes into account the relaxation of internal
molecular modes during moderate thermal excitation [1]. In a study [12] of the effect of excitation of the lower
vibrational levels, the same model flow was calculated within the framework of two-temperature gas dynamics.
The energy relaxation of the vibrational mode to equilibrium was described by the Landau–Teller equation. It was
shown that, against the background of only the relaxation process with no viscous dissipation, the suppression of
the disturbances remained substantial.

At the same time, the results of studies [8, 10, 12] of purely damping perturbations provide only indirect
estimates of the extent to which bulk viscosity (relaxation process) influences LTT. Generally, the dependence of
the critical Reynolds number of LTT Ret on bulk viscosity can be obtained on the basis of the energy theory of
global hydrodynamic stability [13]. By the global nature of hydrodynamic stability is meant the unboundedness of
the amplitudes of the examined perturbations, for which the energy balance equation is derived [8] for the entire
flow region. The values of the stability criteria obtained on the basis of this equation, as a rule, has the meaning
of limiting lower-bound estimates and are not always close to experimental data. Nevertheless, this approach
is currently the only possible method for taking into account the nonlinear stage of loss of stability, though in
generalized form, which is necessary in this case.

It should be noted that energy theory remains unsuitable for compressible flows. This is due to the substantial
nonlinearity of the full Navier–Stokes equations for a compressible heat-conducting gas (see the comments and
references in [13, 14]). All known results of this theory on the stability of incompressible and inhomogeneous liquid
flows have been obtained taking into account the solenoidal nature of the admissible velocity fields, which is absent
in compressible flows. The difficulties of mathematical nature that arise in the case have not been overcome.

In the present paper, the stability of a compressible Couette flow with a linear velocity profile is studied using
energy theory. Some simplifications make it possible to completely solve the corresponding variational problem for
this flow and obtain an explicit dependence of Recr on bulk viscosity.

1. Constitutive Equations. The Couette flow stability problem is considered using the Navier–Stokes
equations for a compressible viscous heat-conducting gas. The computation domain Ω is a rectangular parallelepiped,
whose faces are parallel to the coordinate planes of the Cartesian system (x1, x2, x3) and whose center coincides with
the coordinate origin. The impenetrable infinite plates along which the main current is directed are perpendicular
to the x2 axis.

The characteristic nondimensionalizing scales are the channel width L on the x2 axis, the modulus of the
main-flow velocity U0, the density ρ0 and temperature T0 on the impenetrable walls of the channel, the time
τ0 = L/U0, and the pressure p0 = ρ0U

2
0 . In the dimensionless variables, the system of equations is written as

dρ

dt
+ ρ

∂ui

∂xi
= 0,

ρ
dui

dt
= − ∂p

∂xi
+

1
Re

∂2ui

∂x2
j

+
1

Re

(
α +

1
3

) ∂2uj

∂xi ∂xj
,

ρ
dT

dt
+ γ(γ − 1)M2

0p
∂ui

∂xi
=

γ

Re Pr
∂2T

∂x2
i

,

(1)
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γM2
0p = ρT,

d

dt
=

∂

∂t
+ ui

∂

∂xi
, i, j = 1, 2, 3.

Here ρ, ui, T , and p are the density, velocity components, temperature, and gas pressure, respectively; the summation
is performed over repeated subscripts. It is assumed that the thermal capacity and dissipation coefficients in system
(1) do not depend on temperature and are constant. The parameters included in Eqs. (1) are defined as follows: the
coefficient α is equal to the ratio of the bulk viscosity to the shear viscosity (α = ηb/η) and characterizes the degree
of nonequilibrium of the internal degrees of freedom of the gas molecules; M0 = U0/

√
γRT0 is the Mach number of

the main flow, Re = U0Lρ0/η is the Reynolds number, Pr = ηcp/λ0 is the Prandtl number, R is the gas constant,
γ = cp/cv is the isentropic exponent, cp are cv are the specific heats at constant pressure and volume, respectively
and λ0 is the thermal conductivity. In the energy equation, the group of nonlinear terms constituting the so-
called dissipation function are omitted. This approximation is widely used in stability problems for compressible
flows [5, 6].

Plane Couette flow with a linear velocity profile, which is an exact steady-state solution of system (1), is
described by the relations

Us(x2) = (x2, 0, 0), Ts(x2) = ρs(x2) = 1, ps(x2) = 1/(γM2
0).

Representing the instantaneous values of the hydrodynamic quantities of the perturbed flow as

ρ = 1 + ρ′, ui = Us,i + u′
i, T = 1 + T ′, p = 1/(γM2

0) + p′, (2)

we write the equations for the perturbations ρ′, u′
i, T

′, and p′ of the main flow without constraint on their amplitudes:

∂ρ′

∂t
+ ui

∂ρ′

∂xi
+ ρ

∂u′
i

∂xi
= 0; (3)

ρ
(∂u′

i

∂t
+ u′

j

∂u′
i

∂xj
+ Us,j

∂u′
i

∂xj
+ u′

j

∂Us,i

∂xj

)
= − ∂p′

∂xi
+

1
Re

∂2u′
i

∂x2
j

+
1

Re

(
α +

1
3

) ∂2u′
j

∂xi ∂xj
; (4)

ρ
(∂T ′

∂t
+ u′

j

∂T ′

∂xj
+ Us,j

∂T ′

∂xj

)
+ γ(γ − 1)M2

0p
∂u′

i

∂xi
=

γ

RePr
∂2T ′

∂x2
i

; (5)

γM2
0p

′ = ρT ′ + ρ′, i, j = 1, 2, 3. (6)

Equations (3)–(5) do not contain an explicit dependence of the unperturbed flow velocity (2) on the x2 coordinate
lest the form of summation over subscripts be complicated. It is assumed that, for x1 = ±x0/2 and x3 = ±z0/2,
the perturbations of the velocity u′

i, density ρ′, and pressure p′ satisfy the periodic boundary conditions, and on
impenetrable boundaries x2 = ±1/2, they vanish. For the temperature perturbation T ′, the following boundary
conditions are specified:

∂T ′

∂x1

∣
∣
∣
x1=−x0/2

=
∂T ′

∂x1

∣
∣
∣
x1=+x0/2

,
∂T ′

∂x2

∣
∣
∣
x2=−1/2

=
∂T ′

∂x2

∣
∣
∣
x2=+1/2

= 0,

∂T ′

∂x3

∣∣
∣
x3=−z0/2

=
∂T ′

∂x3

∣∣
∣
x3=+z0/2

.

Below, the dimensions of the domain Ω on the periodic (homogeneous) coordinates x1 and x3 are equal to the
perturbation wavelength on the corresponding coordinate:

x0 = π/β, z0 = π/δ.

Here β and δ are the moduli of the projections of the perturbation wave vector k on the x1 and x3 axes, respectively.
2. Energy Balance Equations and Functionals. We define the kinetic energy of the perturbations as

an integral over the flow region in the form

E(t) =
∫

Ω

ρu′2
i

2
dΩ.
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For the evolution of the quantity E(t), from Eqs. (3) and (4), we derive the energy balance equation similarly to
[8]. For this, Eqs. (3) and (4) are multiplied by u′2

i and u′
i, respectively, and are combined. On the left side of the

resulting relation there is a series of terms in divergent form:
1
2

∂

∂t
(ρu′2

i ) +
1
2

∂

∂xj
(ρu′2

i u′
j) +

1
2

∂

∂xj
(ρu′2

i ) + ρu′
iu

′
j

∂Us,i

∂xj

= −u′
i

∂p′

∂xi
+

1
Re

u′
i

∂2u′
i

∂x2
j

+
1

Re

(
α +

1
3

)
u′

i

∂

∂xi

∂u′
j

∂xj
. (7)

Integration of equality (7) over the domain Ω transforms the divergent terms on the left side to integrals
over the boundary, which vanish by virtue of the boundary conditions on the perturbations. The terms on the right
side are integrated by parts, and the resulting boundary integrals also vanish. As a result, we have the integral
equation

dE

dt
≡ d

dt

∫

Ω

ρu′2
i

2
dΩ = J1 + J2 − 1

Re
(J3 + αJ4). (8)

The term

J1 = −
∫

Ω

ρu′
iu

′
j

∂Ui

∂xj
dΩ

describes the energy exchange between the perturbation and the main flow. The integral

J2 =
∫

Ω

p′
∂u′

i

∂xi
dΩ

can be treated as the work in pulsation compression (expansion) of the gas, and the integrals

J3 =
∫

Ω

[( ∂u′
i

∂xj

)2

+
1
3

(∂u′
i

∂xi

)2]
dΩ, J4 =

∫

Ω

(∂u′
i

∂xi

)2

dΩ

correspond to energy dissipation.
In the above expressions, the signs of the integrals J1 and J2 are not determined, whereas J3 and J4 are

nonnegative. As the Reynolds number Re decreases to a certain value Recr, the dissipation terms J3 and J4 begin
to dominate and the derivative dE/dt < 0 and any perturbations damp with time. This allows one to formulate a
variational problem based on Eq. (8) to estimate the critical Reynolds number Recr, which that corresponds to the
condition dE/dt = 0 and is calculated as the minimum of the functional:

Recr = min
(J3 + αJ4

J1 + J2

)
. (9)

From equality (9), it follows that an increase in the bulk viscosity (or the parameter α) leads to an increase in
the critical Reynolds number Recr, but to obtain a particular value of Recr, it is necessary to solve the variational
eigenvalue problem [13].

At the same time, Eq. (8) was derived similarly to the equation for an incompressible fluid [13] and, in this
form, it does not explicitly take into account the perturbation features in compressible flows. In particular, unlike
for an incompressible fluid, the total perturbation energy in gases, especially in molecular gases should contain not
only the kinetic component E(t) but also the internal energy in any form. In addition, Eq. (8) does not contain an
explicit dependence on the Mach number M0. This is due to the fact that Eq. (8) was derived without using the
energy equation (5) and the equation of state (6).

The energy balance equation (8) can be transformed as follows. Using equality (2), the continuity equa-
tions (3), and the equation of state (6), we write Eq. (5) as

p′
∂u′

i

∂xi
= − ∂

∂t

( ρT

γ(γ − 1)M2
0

)
− 1

(γ − 1)M2
0

∂

∂xi

(
u′

i + M2
0uip

′ − 1
Re Pr

∂T ′

∂xi

)
. (10)

After the substitution of expressions (10) into the integral J2, the divergent terms vanish, by virtue of the boundary
conditions on the perturbations, and, on the left of Eq. (8), we have the time derivative of the integral [15]:
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Et(t) =
∫

Ω

ρ
(u′2

i

2
+

T

γ(γ − 1)M2
0

)
dΩ.

In view of the chosen nondimensionalization method, it is easy to show that, in the dimensional variables, the term
ρT/[γ(γ − 1)M2

0] is the internal energy of the gas in unit volume. Obviously, the energy functional Et is positive
definite. The converted energy balance equation becomes

dEt

dt
= Φ ≡ −

∫

Ω

{
(1 + ρ′)u′

iu
′
j

∂Us,i

∂xj
+

1
Re

[( ∂u′
i

∂xj

)2

+
(
α +

1
3

)(∂u′
i

∂xi

)2]}
dΩ. (11)

For (11), it is also possible to formulate a variational eigenvalue problem to find the critical Reynolds number
Recr. To further simplify Eq. (11), we perform partial separation of the variables and write the dependences of the
perturbations of the velocity, density, and temperature on the periodic coordinate x3 in the form

u′
1 = u′′

1(x1, x2) cos (δx3), u′
2 = u′′

2(x1, x2) cos (δx3), u′
3 = u′′

3(x1, x2) sin (δx3),

ρ′ = ρ′′(x1, x2) cos (δx3), T ′ = T ′′(x1, x2) cos (δx3).
(12)

At x1 = ±π/β, the amplitude functions u′′
i , ρ′′, and T ′′ satisfy the periodic boundary conditions, and on the

impenetrable boundaries x2 = ±1/2, they vanish. Using representation (12), in Eq. (11) we perform integration
over the variable x3 in the range [−π/δ; π/δ]. As shown in [14], the operations of variation and partial integration
over homogeneous coordinates are permutational and a change in their order does not change the original variational
problem. As a result, we have

dE′′
t

dt
= Φ′′ ≡ −

∫

S

{
u′′

1u′′
2 +

1
Re

[(∂u′′
1

∂x1

)2

+
(∂u′′

1

∂x2

)2

+
(∂u′′

2

∂x1

)2

+
(∂u′′

2

∂x2

)2

+
(∂u′′

3

∂x1

)2

+
(∂u′′

3

∂x2

)2

+ δ2(u′′2
1 + u′′2

2 + u′′2
3 ) +

(
α +

1
3

)(∂u′′
1

∂x1
+

∂u′′
2

∂x2
+ δu′′

3

)2]}
dS. (13)

From expression (13), it follows that, after transformation (11), the varied functional Φ′′ on the right side becomes
quadratic in the amplitude functions u′′

i .
3. Spectral Problem. Subjecting the functions u′′

k in the functional Φ′′ to small smooth variations u′′
k+δu′′

k

admitted by the boundary conditions, we distinguish a functional L(δu′′
k), which is linear in the increment vector

and leads to the Euler–Lagrange equations

Δ2u
′′
1 +

(
α +

1
3

) ∂

∂x1

(∂u′′
1

∂x1
+

∂u′′
2

∂x2
+ δu′′

3

)
=

Re
2

u′′
2 ,

Δ2u
′′
2 +

(
α +

1
3

) ∂

∂x2

(∂u′′
1

∂x1
+

∂u′′
2

∂x2
+ δu′′

3

)
=

Re
2

u′′
1 , (14)

Δ2u
′′
3 − δ

(
α +

1
3

)(∂u′′
1

∂x1
+

∂u′′
2

∂x2
+ δu′′

3

)
= 0,

where the operator Δ2 has the form

Δ2 =
∂2

∂x2
1

+
∂2

∂x2
2

− δ2.

System (14) defines the differential eigenvalue problem with the spectral parameter Re.
The velocity pulsation vector u′′ can be represented as

u′′ ≡ (u′′
1 , u′′

2 , u′′
3) = v exp (iβx1), (15)

where v = (u(x2), v(x2), w(x2)) is the vector of the perturbation amplitudes, β is the absolute value of the projection
of the wave vector onto the x1 coordinate axis, and i is imaginary unit. Substitution of Eq. (15) into the Euler–
Lagrange equations (14) leads to the following system of differential equations for the amplitudes u, v, and w:

d2u

dy2
+ iβ

(
α +

1
3

)dv

dy
−

[
β2

(
α +

4
3

)
+ δ2

]
u − Re

2
v + iβδ

(
α +

1
3

)
w = 0,

411



(
α +

4
3

)d2v

dy2
+ iβ

(
α +

1
3

)du

dy
+ δ

(
α +

1
3

)dw

dy
− Re

2
u − (β2 + δ2)v = 0, (16)

d2w

dy2
− δ

(
α +

1
3

)dv

dy
− iβδ

(
α +

1
3

)
u −

[
δ2

(
α +

4
3

)
+ β2

]
w = 0,

u
∣∣
∣
y=±1/2

= v
∣∣
∣
y=±1/2

= w
∣∣
∣
y=±1/2

= 0.

Here and below, the x2 coordinate is redenoted by y. We note that system (16) is not reduced to a lower-order
system by a linear change of variables, as in linear stability theory (cf. [6]); therefore, analytical results can be
obtained only in particular cases, which are considered below.

3.1. Constant Mode β = δ = 0. In this case, system (16) becomes

d2u

dy2
− Re

2
v = 0,

(
α +

4
3

)d2v

dy2
− Re

2
u = 0,

d2w

dy2
= 0,

u
∣
∣
∣
y=±1/2

= v
∣
∣
∣
y=±1/2

= w
∣
∣
∣
y=±1/2

= 0.

(17)

The third equation of system (17) is integrated separately and has the general solution

w = c1x2 + c2,

which vanishes identically under zero boundary conditions.
The characteristic equation of the thus abridged system (17) becomes

λ4 − (Re /2)2(α + 4/3)−1 = 0.

The roots of this equation are

λ1,2 = ±a, λ3,4 = ±ia, a =
√

Re /2(α + 4/3)−1/4.

The general solution of the abridged system (17) is written as

V = c1V1 eax2 + c2V2 e−ax2 + c3V3 cos (ax2) + c4V4 sin (ax2),

where V = (u, v); Vk = (uk, vk) (k = 1, 2, 3, 4) are eigenvectors. Using the homogeneous boundary conditions, we
obtain V1 = V2 ≡ 0; the nontrivial solutions are possible in two cases:

V3 �= 0, V4 = 0, cos (a/2) = 0 (18)

or

V3 = 0, V4 �= 0, sin (a/2) = 0. (19)

As a result, from conditions (18) and (19), it follows that the eigenvalue spectra have the following form,
respectively:

Re(0)
cr,n = 2π2(2n − 1)2(α + 4/3)1/2, Re(0)

s,n = 8π2n2(α + 4/3)1/2, n = 1, 2, 3, . . . .

The critical value of the Reynolds number Re(0)
cr is determined as the minimum value of the sets Re(0)

1,n and Re(0)
2,n:

Re(0)
cr = min

n∈N

(
Re(0)

cr,n, Re(0)
s,n

)
= 2π2(α + 4/3)1/2.

3.2. Longitudinal Modes β � 1 and δ = 0. For δ = 0, system (16) reduces to the system

d2u

dy2
+ iβ

(
α +

1
3

)dv

dy
− β2

(
α +

4
3

)
u − Re

2
v = 0,

(
α +

4
3

)d2v

dy2
+ iβ

(
α +

1
3

)du

dy
− Re

2
u − β2v = 0, (20)

d2w

dy2
− β2w = 0,
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u
∣∣
∣
y=±1/2

= v
∣∣
∣
y=±1/2

= w
∣∣
∣
y=±1/2

= 0.

The equation for the transverse component in (20) is integrated separately and has the general solution

w = c1 eβx2 + c2 e−βx2 .

Substitution of this solution into the zero boundary conditions for w yields the following homogeneous system for
arbitrary constants:

c1 eβ/2 + c2 e−β/2 = 0, c1 e−β/2 + c2 eβ/2 = 0.

From this, it follows that, for β �= 0, the solution w ≡ 0.
For the thus abridged system (20), the characteristic equations becomes an incomplete quadratic equation,

which can be written in standard form [16]

λ4 + pλ2 + qλ + r = 0, (21)

where

p = −2β2, q = i Re β(1 + 3α)/(4 + 3α), r = β4 − 3 Re2 /[4(4 + 3α)].

The roots of Eq. (21) are calculated through the roots of the resolvent cubic equation, which is written in reduced
form as

z3 + p1z + q1 = 0,

p1 =
3 Re2

4 + 3α
− 16

3
β4, q1 =

Re
4 + 3α

2(9α2 + 18α + 17)β2 − 128
27

β6.

The discriminant of the cubic resolvent is

D = (p1/3)3 + (q1/2)2 > 0.

From this it follows that, for arbitrary β, Eq. (21) has two real and two complex conjugate roots. However, because
the expressions are cumbersome, their further analysis is generally complicated.

Let us consider the long-wave approximation assuming that β � 1. Generally, the roots of Eq. (21) are
calculated from the formulas [16]

λ1 =
(√

z1 + 4β2/3 +
√

z2 + 4β2/3 +
√

z3 + 4β2/3
)
/2,

λ2 =
(√

z1 + 4β2/3 −
√

z2 + 4β2/3 −
√

z3 + 4β2/3
)
/2,

λ3 =
(
−

√
z1 + 4β2/3 +

√
z2 + 4β2/3 −

√
z3 + 4β2/3

)
/2,

λ4 =
(
−

√
z1 + 4β2/3 −

√
z2 + 4β2/3 +

√
z3 + 4β2/3

)
/2,

where zk (k = 1, 2, 3) are roots of the resolvent cubic equation. The roots of the characteristic equation (21) are
expressed, to within terms of order O(β4), as follows:

λ1,2 = ±a1 + ib, λ3,4 = ±i(a2 ∓ b),

a1,2 =

√
Re
2

(
α +

4
3

)−1/4[
1 ± β2(7 + 3α)2

36 Re

(
α +

4
3

)−1/2]
, b =

β(1 + 3α)
6

(
α +

4
3

)−1/2

.

In the abridged system (20), since the coefficients are complex-valued, the amplitudes of the velocity pulsations u

and v are expressed in terms of the real part of the general solution of this system:

Re (V ) = Re
( 4∑

k=1

ckVk eλk

)
(22)

[Vk = (uk1 + iuk2, vk1 + ivk2) are complex-valued eigenvectors].
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Considering each term in (22) separately and taking into account the homogeneous boundary conditions for
the component of the eigenvectors for k = 1, 2, we obtain the systems

qk1 cos (b/2) − qk2 sin (b/2) = 0, qk1 cos (b/2) + qk2 sin (b/2) = 0, qkj = (ukj , vkj).

These systems have nontrivial solutions if sin b = 0, which is ruled out in the case β �= 0. From this, we have
V1 = V2 = 0. Similarly, for the eigenvector components for k = 3, 4, we have homogeneous systems of the form

qk1 cos
(a2 ∓ b

2

)
∓ qk2 sin

(a2 ∓ b

2

)
= 0, qk1 cos

(a2 ∓ b

2

)
± qk2 sin

(a2 ∓ b

2

)
= 0,

qkj = (ukj , vkj),

where the upper signs correspond to the case k = 3, and the lower signs to k = 4. These systems have nontrivial
solutions if the following conditions are satisfied:

sin (a2 ∓ b) = 0. (23)

Using (23), we obtain the following equations for the eigenvalues Re:

x2 − p±x − s = 0. (24)

Here

x =
√

Re /2(α + 4/3)−1/4, s = β2(7 + 3α)2/[24(4 + 3α)],
(25)

p± = πn[1 ± β(1 + 3α)(α + 4/3)−1/2/(6πn)], n = 1, 2, 3, . . . ,

where the upper sign corresponds to the first condition in (23).
The roots of the quadratic equation (24), to within terms of order O(β3), are given by

x1 = πn
[
1 ± β(1 + 3α)

6πn

(
α +

4
3

)−1/2]
+

β2πn

4

[ (1 + 3α)2

(6πn)2
(
α +

4
3

)−1

+
(7 + 3α)2

18(πn)2
(
α +

4
3

)−1]
,

x2 = −β2πn

4

[ (1 + 3α)2

(6πn)2
(
α +

4
3

)−1

+
(7 + 3α)2

18(πn)2
(
α +

4
3

)−1]
.

The root x2 is not considered further since it corresponds to the out-of-order dependence Re ∼ O(β4), which was
neglected above in the expressions for the roots λk of the characteristic equation.

The spectra of the eigenvalues Re are given, to within terms of order O(β3), for the root x1, by the relations

Re(β)
n = 2π2n2

(
α +

4
3

)1/2{[
1 ± β(1 + 3α)

6πn

(
α +

4
3

)−1/2]2

+
β2

2

[ (1 + 3α)2

(6πn)2
(
α +

4
3

)−1

+
(7 + 3α)2

18(πn)2
(
α +

4
3

)−1]}
, n = 1, 2, 3, . . . , (26)

where the plus sign corresponds to the first condition in (23).
From (26), it follows that the minimum Reynolds number Re(β)

cr for long-wave longitudinal modes is

Re(β)
cr = 2π2

(
α +

4
3

)1/2[
1 − β(1 + 3α)

3π

(
α +

4
3

)−1/2

+
β2

72π2
(45α2 + 102α + 101)

(
α +

4
3

)−1]
.

3.3. Transverse Modes β = 0 and δ � 1. Investigation of these modes is of interest since, for an incompress-
ible Couette flow, the critical Reynolds number the closest to experimental values was obtained for a transverse
mode [13]. For β = 0, system (20) becomes

d2u

dy2
− δ2u − Re

2
v = 0,

(
α +

4
3

)d2v

dy2
+ δ

(
α +

1
3

)dw

dy
− Re

2
u − δ2v = 0, (27)

d2w

dy2
− δ

(
α +

1
3

)dv

dy
− δ2

(
α +

4
3

)
w = 0,
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u
∣∣
∣
y=±1/2

= v
∣∣
∣
y=±1/2

= w
∣∣
∣
y=±1/2

= 0.

The characteristic equation of system (27) is written as

λ6 − 3δ2λ4 +
3
4

(
4δ4 − Re2

4 + 3α

)
λ2 − δ2

(
δ4 − Re2

4

)
= 0. (28)

The change z = λ2 − δ2 transforms this equation to the reduced cubic equation

z3 + p1z + q1 = 0,

where

p1 = −(Re /2)2(α + 4/3)−1, q1 = δ2 Re2(1 + 3α)(α + 4/3)−1/12.

The discriminant of this equation

D = (p1/3)3 + (q1/2)2 < 0

for the characteristic dependence Re (α) remains negative even in the case δ ∼ O(1). The reduced cubic equation
has three real roots defined by the Cardano formulas [16]:

zk = 2ξ1/3 cos [(ϕ + 2kπ)/3], k = 0, 1, 2.

Here

ξ =

√

−
(p1

3

)3

=
[ Re
2
√

3

(
α +

4
3

)−1/2]3

, cosϕ = − q1

2ξ
= −δ2

√
3

Re
(1 + 3α)

(
α +

4
3

)1/2

.

Retaining terms of order not higher than O(δ2) in the expressions for zk, we obtain the following expressions for
the roots of the characteristic equation (28):

λ1,2 = ±
√

z0 + δ2 = ±δ(α + 4/3)1/2,

λ3,4 = ±
√

z1 + δ2 = ±
√

Re(α + 4/3)−1/2/2 + δ2(5 − 3α)/6,

λ5,6 = ±
√

z2 + δ2 = ±i
√

Re(α + 4/3)−1/2/2 − δ2(5 − 3α)/6.

Thus, the first four roots λk (k = 1, 2, 3, 4) are real, and the roots λ5,6 are complex conjugate, purely imaginary.
Because the velocity pulsation amplitude vector v is real, it is expressed in terms of the real part of the

general solution of system (27):

v = Re (V ) = Re
( 4∑

k=1

ckVk eλk

)
(29)

[Vk = (uk1 + iuk2, vk1 + ivk2, wk1 + iwk2) are complex-valued eigenvectors].
For each term in (29), in view of the homogeneous boundary conditions for the amplitudes, it follows that

the eigenvectors corresponding to the real roots are zero:

V1 = V2 = V3 = V4 = 0.

For the eigenvector components for k = 5, 6, the following homogeneous systems hold:

qk1 cos (|λk|/2)− qk2 sin (|λk|/2) = 0, qk1 cos (|λk|/2) + qk2 sin (|λk|/2) = 0,

qkj = (ukj , vkj , wkj).

Nontrivial solutions of these systems exist for sin |λk| = 0. In this case, the eigenvalue spectrum has the form

Re(δ)
n = 2(α + 4/3)1/2[π2n2 + δ2(5/3 − α)/2], n = 1, 2, 3, . . . .

Consequently, the critical Reynolds number, as the minimal eigenvalue of the set of eigenvalues for transverse modes,
is

Re(δ)
cr = 2π2(α + 4/3)1/2[1 + δ2(5/3 − α)/(2π2)].
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Conclusions. An energy functional leading to an effectively resolvable variational problem for determining
the critical Reynolds number LTT Recr was constructed within the framework of nonlinear energy stability theory
for compressible flows.

Asymptotic estimates containing the characteristic dependence Recr ∼ √
α + 4/3 in the main order were

obtained for the stability of different modes of Couette compressible gas flow. This implies that, at ratios of the
bulk to shear viscosity (parameter α) realistic for diatomic gases, the critical Reynolds number can considerably
increase with increasing bulk viscosity. The estimates are consistent with data on the effect of bulk viscosity on the
stability of boundary layers on a plate obtained within the framework of linear theory [4, 7], because in near-wall
and free shear layers, the LTT mechanism are different.

The asymptotics considered are long-wave approximations. This suggests that the obtained relation describes
the effect of bulk viscosity on large-scale vortex structures characteristic of the development of Kelvin–Helmholtz
instability.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00359).
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